
computer 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE 

Such systems are particularly useful for entertainment 
products such as movies, music, and TV shows. Many cus-
tomers will view the same movie, and each customer is 
likely to view numerous different movies. Customers have 
proven willing to indicate their level of satisfaction with 
particular movies, so a huge volume of data is available 
about which movies appeal to which customers. Com-
panies can analyze this data to recommend movies to 
particular customers. 

RecommendeR system stRategies
Broadly speaking, recommender systems are based 

on one of two strategies. The content filtering approach 
creates a profile for each user or product to characterize 
its nature. For example, a movie profile could include at-
tributes regarding its genre, the participating actors, its 
box office popularity, and so forth. User profiles might 
include demographic information or answers provided 
on a suitable questionnaire. The profiles allow programs 
to associate users with matching products. Of course, 
content-based strategies require gathering external infor-
mation that might not be available or easy to collect. 

A known successful realization of content filtering is 
the Music Genome Project, which is used for the Internet 
radio service Pandora.com. A trained music analyst scores 

M
odern consumers are inundated with 
choices. Electronic retailers and content 
providers offer a huge selection of prod-
ucts, with unprecedented opportunities 
to meet a variety of special needs and 

tastes. Matching consumers with the most appropriate 
products is key to enhancing user satisfaction and loy-
alty. Therefore, more retailers have become interested in 
recommender systems, which analyze patterns of user 
interest in products to provide personalized recommenda-
tions that suit a user’s taste. Because good personalized 
recommendations can add another dimension to the user 
experience, e-commerce leaders like Amazon.com and 
Netflix have made recommender systems a salient part 
of their websites. 

As the Netflix Prize competition has dem-
onstrated, matrix factorization models 
are superior to classic nearest-neighbor 
techniques for producing product recom-
mendations, allowing the incorporation 
of additional information such as implicit 
feedback, temporal effects, and confidence 
levels. 

Yehuda Koren, Yahoo Research  

Robert Bell and Chris Volinsky, AT&T Labs—Research

MATRIX  
FACTORIZATION 
TECHNIQUES FOR 
RECOMMENDER 
SYSTEMS 



43AuGuSt 2009

well-defined dimensions such as depth of character de-
velopment or quirkiness; or completely uninterpretable 
dimensions. For users, each factor measures how much 
the user likes movies that score high on the correspond-
ing movie factor. 

Figure 2 illustrates this idea for a simplified example 
in two dimensions. Consider two hypothetical dimen-
sions characterized as female- versus male-oriented and 
serious versus escapist. The figure shows where several 
well-known movies and a few fictitious users might fall on 
these two dimensions. For this model, a user’s predicted 
rating for a movie, relative to the movie’s average rating, 
would equal the dot product of the movie’s and user’s lo-
cations on the graph. For example, we would expect Gus 
to love Dumb and Dumber, to hate The Color Purple, and 
to rate Braveheart about average. Note that some mov-
ies—for example, Ocean’s 11—and users—for example, 
Dave—would be characterized as fairly neutral on these 
two dimensions. 

matRix factoRization methods
Some of the most successful realizations of latent factor 

models are based on matrix factorization. In its basic form, 
matrix factorization characterizes both items and users by 
vectors of factors inferred from item rating patterns. High 
correspondence between item and user factors leads to a 

each song in the Music Genome Project 
based on hundreds of distinct musical 
characteristics. These attributes, or genes, 
capture not only a song’s musical identity 
but also many significant qualities that are 
relevant to understanding listeners’ musi-
cal preferences. 

An alternative to content filtering relies 
only on past user behavior—for example, 
previous transactions or product ratings—
without requiring the creation of explicit 
profiles. This approach is known as col-
laborative filtering, a term coined by the 
developers of Tapestry, the first recom-
mender system.1 Collaborative filtering 
analyzes relationships between users and 
interdependencies among products to 
identify new user-item associations. 

A major appeal of collaborative fil-
tering is that it is domain free, yet it can 
address data aspects that are often elusive 
and difficult to profile using content filter-
ing. While generally more accurate than 
content-based techniques, collaborative 
filtering suffers from what is called the cold 
start problem, due to its inability to ad-
dress the system’s new products and users. In this aspect, 
content filtering is superior. 

The two primary areas of collaborative filtering are the 
neighborhood methods and latent factor models. Neighbor-
hood methods are centered on computing the relationships 
between items or, alternatively, between users. The item-
oriented approach evaluates a user’s preference for an 
item based on ratings of “neighboring” items by the same 
user. A product’s neighbors are other products that tend 
to get similar ratings when rated by the same user. For 
example, consider the movie Saving Private Ryan. Its 
neighbors might include war movies, Spielberg movies, 
and Tom Hanks movies, among others. To predict a par-
ticular user’s rating for Saving Private Ryan, we would look 
for the movie’s nearest neighbors that this user actually 
rated. As Figure 1 illustrates, the user-oriented approach 
identifies like-minded users who can complement each 
other’s ratings. 

Latent factor models are an alternative approach 
that tries to explain the ratings by characterizing both 
items and users on, say, 20 to 100 factors inferred from 
the ratings patterns. In a sense, such factors comprise a 
computerized alternative to the aforementioned human-
created song genes. For movies, the discovered factors 
might measure obvious dimensions such as comedy versus 
drama, amount of action, or orientation to children; less 

Joe

#2

#3

#1

#4

figure 1. The user-oriented neighborhood method. Joe likes the three 
movies on the left. To make a prediction for him, the system finds similar 
users who also liked those movies, and then determines which other movies 
they liked. In this case, all three liked Saving Private Ryan, so that is the first 
recommendation. Two of them liked Dune, so that is next, and so on. 



COVER FE ATURE

computer 44

vector q
i
 ∈  f, and each user u is associ-

ated with a vector p
u
 ∈  f. For a given item 

i, the elements of q
i
 measure the extent to 

which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of p

u
 measure the extent of 

interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
q

i
T p

u
, captures the interaction between user 

u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
r

ui
, leading to the estimate 
 
r̂ui  

= q
i
T p

u
. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
q

i
, p

u
 ∈  f. After the recommender system 

completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (p

u
 and q

i
), the system 

minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i ∈

∑
κ

(r
ui
 - q

i
Tp

u
)2 + λ(|| q

i
 ||2 + || p

u
 ||2)  (2) 

Here, κ is the set of the (u,i) pairs for which r
ui
 is known 

(the training set). 
The system learns the model by fitting the previously 

observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

a Basic matRix factoRization modeL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 

Geared
toward
males 

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females 

Amadeus

The Lion King
Dumb and

Dumber

The Color Purple

figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 



45AuGuSt 2009

data aspects and other application-specific requirements. 
This requires accommodations to Equation 1 while staying 
within the same learning framework. Equation 1 tries to cap-
ture the interactions between users and items that produce 
the different rating values. However, much of the observed 
variation in rating values is due to effects associated with 
either users or items, known as biases or intercepts, indepen-
dent of any interactions. For example, typical collaborative 
filtering data exhibits large systematic tendencies for some 
users to give higher ratings than others, and for some items 
to receive higher ratings than others. After all, some products 
are widely perceived as better (or worse) than others. 

Thus, it would be unwise to explain the full rating value 
by an interaction of the form q

i
Tp

u
. Instead, the system tries 

to identify the portion of these values that individual user or 
item biases can explain, subjecting only the true interaction 
portion of the data to factor modeling. A first-order approxi-
mation of the bias involved in rating r

ui
 is as follows: 

 b
ui
 = µ + b

i
 + b

u
  (3) 

The bias involved in rating r
ui
 is denoted by b

ui
 and ac-

counts for the user and item effects. The overall average 
rating is denoted by µ; the parameters b

u
 and b

i
 indicate 

the observed deviations of user u and item i, respectively, 
from the average. For example, suppose that you want 
a first-order estimate for user Joe’s rating of the movie  
Titanic. Now, say that the average rating over all movies, µ, 
is 3.7 stars. Furthermore, Titanic is better than an average 
movie, so it tends to be rated 0.5 stars above the average. 
On the other hand, Joe is a critical user, who tends to rate 
0.3 stars lower than the average. Thus, the estimate for 
Titanic’s rating by Joe would be 3.9 stars (3.7 + 0.5 - 0.3). 
Biases extend Equation 1 as follows: 

r̂ui  
= µ+ b

i
 + b

u
 + q

i
Tp

u
  (4) 

Here, the observed rating is broken down into its four 
components: global average, item bias, user bias, and user-
item interaction. This allows each component to explain 
only the part of a signal relevant to it. The system learns 
by minimizing the squared error function:4,5

min
* * *, ,p q b

( , )u i ∈
∑

κ

(r
ui
 - µ - b

u
 - b

i
 - p

u
Tq

i
)2 + λ  

 
     (|| p

u
 ||2 + || q

i
 ||2 + b

u
2 + b

i
2)  (5) 

Since biases tend to capture much of the observed 
signal, their accurate modeling is vital. Hence, other works 
offer more elaborate bias models.11

additionaL inPUt soURces 
Often a system must deal with the cold start problem, 

wherein many users supply very few ratings, making it 

the extent of regularization and is usually determined by 
cross-validation. Ruslan Salakhutdinov and Andriy Mnih’s 
“Probabilistic Matrix Factorization”7 offers a probabilistic 
foundation for regularization. 

LeaRning aLgoRithms 
Two approaches to minimizing Equation 2 are stochastic 

gradient descent and alternating least squares (ALS). 

stochastic gradient descent 
Simon Funk popularized a stochastic gradient descent 

optimization of Equation 2 (http://sifter.org/~simon/
journal/20061211.html) wherein the algorithm loops 
through all ratings in the training set. For each given 
training case, the system predicts r

ui
 and computes the 

associated prediction error 

e
ui
 =

def

 r
ui
 - q

i
T p

u
. 

Then it modifies the parameters by a magnitude pro-
portional to g in the opposite direction of the gradient, 
yielding: 

 •	 q q e p qi i ui u i← + ⋅ ⋅ - ⋅g λ( )
 •	 p p e q pu u ui i u← + ⋅ ⋅ - ⋅g λ( )

This popular approach4-6 combines implementation 
ease with a relatively fast running time. Yet, in some cases, 
it is beneficial to use ALS optimization. 

alternating least squares 
Because both q

i
 and p

u
 are unknowns, Equation 2 is not 

convex. However, if we fix one of the unknowns, the op-
timization problem becomes quadratic and can be solved 
optimally. Thus, ALS techniques rotate between fixing the 
q

i
’s and fixing the p

u
’s. When all p

u
’s are fixed, the system 

recomputes the q
i
’s by solving a least-squares problem, and 

vice versa. This ensures that each step decreases Equation 
2 until convergence.8  

While in general stochastic gradient descent is easier 
and faster than ALS, ALS is favorable in at least two cases. 
The first is when the system can use parallelization. In ALS, 
the system computes each q

i
 independently of the other 

item factors and computes each p
u
 independently of the 

other user factors. This gives rise to potentially massive 
parallelization of the algorithm.9 The second case is for 
systems centered on implicit data. Because the training 
set cannot be considered sparse, looping over each single 
training case—as gradient descent does—would not be 
practical. ALS can efficiently handle such cases.10 

adding Biases 
One benefit of the matrix factorization approach to col-

laborative filtering is its flexibility in dealing with various 



COVER FE ATURE

computer 46

prove accuracy. Decomposing ratings into distinct terms 
allows the system to treat different temporal aspects sepa-
rately. Specifically, the following terms vary over time: item 
biases, b

i
(t); user biases, b

u
(t); and user preferences, p

u
(t). 

The first temporal effect addresses the fact that an 
item’s popularity might change over time. For example, 
movies can go in and out of popularity as triggered by 
external events such as an actor’s appearance in a new 
movie. Therefore, these models treat the item bias b

i
 as a 

function of time. The second temporal effect allows users 
to change their baseline ratings over time. For example, a 
user who tended to rate an average movie “4 stars” might 
now rate such a movie “3 stars.” This might reflect several 
factors including a natural drift in a user’s rating scale, 
the fact that users assign ratings relative to other recent 
ratings, and the fact that the rater’s identity within a house-
hold can change over time. Hence, in these models, the 
parameter b

u
 is a function of time. 

Temporal dynamics go beyond this; they also affect 
user preferences and therefore the interaction between 
users and items. Users change their preferences over time. 
For example, a fan of the psychological thrillers genre 
might become a fan of crime dramas a year later. Simi-
larly, humans change their perception of certain actors 
and directors. The model accounts for this effect by taking 
the user factors (the vector p

u
) as a function of time. On 

the other hand, it specifies static item characteristics, q
i
, 

because, unlike humans, items are static in nature. 
Exact parameterizations of time-varying parameters11 

lead to replacing Equation 4 with the dynamic prediction 
rule for a rating at time t: 

 
r̂ui (t) = µ + b

i
(t) + b

u
(t) + q

i
T p

u
(t)  (7) 

inPUts With VaRying confidence LeVeLs 
In several setups, not all observed ratings deserve the 

same weight or confidence. For example, massive adver-
tising might influence votes for certain items, which do 
not aptly reflect longer-term characteristics. Similarly, a 
system might face adversarial users that try to tilt the rat-
ings of certain items. 

Another example is systems built around implicit 
feedback. In such systems, which interpret ongoing 
user behavior, a user’s exact preference level is hard to 
quantify. Thus, the system works with a cruder binary 
representation, stating either “probably likes the product” 
or “probably not interested in the product.” In such cases, 
it is valuable to attach confidence scores with the esti-
mated preferences. Confidence can stem from available 
numerical values that describe the frequency of actions, 
for example, how much time the user watched a certain 
show or how frequently a user bought a certain item. These 
numerical values indicate the confidence in each obser-
vation. Various factors that have nothing to do with user 

difficult to reach general conclusions on their taste. A way 
to relieve this problem is to incorporate additional sources 
of information about the users. Recommender systems can 
use implicit feedback to gain insight into user preferences. 
Indeed, they can gather behavioral information regardless 
of the user’s willingness to provide explicit ratings. A re-
tailer can use its customers’ purchases or browsing history 
to learn their tendencies, in addition to the ratings those 
customers might supply. 

For simplicity, consider a case with a Boolean implicit 
feedback. N(u) denotes the set of items for which user u 
expressed an implicit preference. This way, the system 
profiles users through the items they implicitly preferred. 
Here, a new set of item factors are necessary, where item 
i is associated with x

i
 ∈  f. Accordingly, a user who 

showed a preference for items in N(u) is characterized by 
the vector

 xi

i N u∈
∑

( )

.

 Normalizing the sum is often beneficial, for example, 
working with 

|N(u)|–0.5 xi

i N u∈
∑

( )

.4,5 

Another information source is known user attributes, 
for example, demographics. Again, for simplicity consider 
Boolean attributes where user u corresponds to the set 
of attributes A(u), which can describe gender, age group, 
Zip code, income level, and so on. A distinct factor vector 
y

a
 ∈ f corresponds to each attribute to describe a user 

through the set of user-associated attributes: 

ya

a A u∈
∑

( )

The matrix factorization model should integrate all 
signal sources, with enhanced user representation: 

r̂ui  
= µ + b

i
 + b

u
 + q

i
T [p

u
 + |N(u)|–0.5 x yi a

i N u a A u∈ ∈
∑ ∑+

( ) ( )

]    (6)
 
While the previous examples deal with enhancing user 

representation—where lack of data is more common—
items can get a similar treatment when necessary. 

temPoRaL dynamics 
So far, the presented models have been static. In real-

ity, product perception and popularity constantly change 
as new selections emerge. Similarly, customers’ inclina-
tions evolve, leading them to redefine their taste. Thus, 
the system should account for the temporal effects re-
flecting the dynamic, time-drifting nature of user-item 
interactions. 

The matrix factorization approach lends itself well to 
modeling temporal effects, which can significantly im-



47AuGuSt 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing r

ui
 is denoted as 

c
ui
, then the model enhances the cost 

function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i ∈
∑

κ

c
ui
(r

ui
 - µ - b

u
 - b

i
 

- p
u

Tq
i
)2 + λ (|| p

u
 ||2 + || q

i
 ||2  

 + b
u

2 + b
i
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

netfLix PRize 
comPetition 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.

–1.5 –1.0 –0.5 0.0 0.5 1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Factor vector 1 

Fa
cto

r v
ec

to
r 2

 Freddy Got Fingered

Freddy vs. J
ason

Half B
aked

Road Trip

The Sound of M
usic

Sophie’s C
hoice

Moonstru
ck

Maid in Manhatta
n

The Way We Were

Runaway Bride

Coyote Ugly

The Royal Tenenbaums

Punch-Drunk Love

I Heart H
uckabees

Arm
ageddon

Citiz
en Kane

The Waltons: S
eason 1 

Stepmom

Julien Donkey-Boy

Siste
r A

ct

The Fast a
nd the Furious

The Wiza
rd of Oz

Kill B
ill: 

Vol. 1
 

Scarfa
ceNatural Born Kille

rs

Annie Hall

Belle de Jour
Lost i

n Transla
tion

The Longest Y
ard

Being John Malkovich

Catwoman

figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent films. 



COVER FE ATURE

computer 48

M
atrix factoriza-
tion techniques 
have become a 
dominant meth-
odology within 

collaborative filtering recom-
menders. Experience with 
datasets such as the Netflix Prize 
data has shown that they deliver 
accuracy superior to classical 
nearest-neighbor techniques. At 
the same time, they offer a com-
pact memory-efficient model 
that systems can learn relatively 
easily. What makes these tech-
niques even more convenient is 
that models can integrate natu-
rally many crucial aspects of the 
data, such as multiple forms of 
feedback, temporal dynamics, 
and confidence levels. 

References
 1. D. Goldberg et al., “Using Col- 
  laborative Filtering to Weave  
  an Information Tapestry,”  
  Comm. ACM, vol. 35, 1992, pp.  
  61-70. 

 2. B.M. Sarwar et al., “Application of Dimensionality Reduc-
tion in Recommender System—A Case Study,” Proc. KDD 
Workshop on Web Mining for e-Commerce: Challenges and 
Opportunities (WebKDD), ACM Press, 2000. 

 3. S. Funk, “Netflix Update: Try This at Home,” Dec. 2006; 
http://sifter.org/~simon/journal/20061211.html. 

 4. Y. Koren, “Factorization Meets the Neighborhood: A Mul-
tifaceted Collaborative Filtering Model,” Proc. 14th ACM 
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 
ACM Press, 2008, pp. 426-434. 

 5. A. Paterek, “Improving Regularized Singular Value De-
composition for Collaborative Filtering,” Proc. KDD Cup 
and Workshop, ACM Press, 2007, pp. 39-42. 

 6. G. Takács et al., “Major Components of the Gravity Recom-
mendation System,” SIGKDD Explorations, vol. 9, 2007, pp. 
80-84. 

 7. R. Salakhutdinov and A. Mnih, “Probabilistic Matrix Fac-
torization,” Proc. Advances in Neural Information Processing 
Systems 20 (NIPS 07), ACM Press, 2008, pp. 1257-1264. 

 8. R. Bell and Y. Koren, “Scalable Collaborative Filtering with 
Jointly Derived Neighborhood Interpolation Weights,” Proc. 
IEEE Int’l Conf. Data Mining (ICDM 07), IEEE CS Press, 2007, 
pp. 43-52. 

 9. Y. Zhou et al., “Large-Scale Parallel Collaborative Filter-
ing for the Netflix Prize,” Proc. 4th Int’l Conf. Algorithmic 
Aspects in Information and Management, LNCS 5034, 
Springer, 2008, pp. 337-348. 

 10. Y.F. Hu, Y. Koren, and C. Volinsky, “Collaborative Filtering 
for Implicit Feedback Datasets,” Proc. IEEE Int’l Conf. Data 
Mining (ICDM 08), IEEE CS Press, 2008, pp. 263-272. 

the mainstream crowd-pleasers, is The Sound of Music. 
And smack in the middle, appealing to all types, is The 
Wizard of Oz. 

In this plot, some movies neighboring one another typi-
cally would not be put together. For example, Annie Hall 
and Citizen Kane are next to each other. Although they 
are stylistically very different, they have a lot in common 
as highly regarded classic movies by famous directors. 
Indeed, the third dimension in the factorization does end 
up separating these two. 

We tried many different implementations and pa-
rameterizations for factorization. Figure 4 shows how 
different models and numbers of parameters affect the 
RMSE as well as the performance of the factorization’s 
evolving implementations—plain factorization, adding 
biases, enhancing user profile with implicit feedback, and 
two variants adding temporal components. The accuracy 
of each of the factor models improves by increasing the 
number of involved parameters, which is equivalent to 
increasing the factor model’s dimensionality, denoted by 
numbers on the charts. 

The more complex factor models, whose descriptions 
involve more distinct sets of parameters, are more accu-
rate. In fact, the temporal components are particularly 
important to model as there are significant temporal ef-
fects in the data. 

40
60

90
128

18050
100 200

50

100
200

100 200 500 50
100 200 500 1,000

1,500

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

10 100 1,000 10,000 100,000
Millions of parameters

RM
SE

Plain
With biases
With implicit feedback
With temporal dynamics (v.1)
With temporal dynamics (v.2)

figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square 
error of each of four individual factor models (lower is better). Accuracy improves when 
the factor model’s dimensionality (denoted by numbers on the charts) increases. In 
addition, the more refined factor models, whose descriptions involve more distinct  
sets of parameters, are more accurate. For comparison, the Netflix system achieves 
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is  
RMSE = 0.8563.



49AuGuSt 2009

Robert Bell is a principal member of the technical staff at 
AT&T Labs—Research. His research interests are survey 
research methods and statistical learning methods. He re-
ceived a PhD in statistics from Stanford University. Bell is 
a member of the American Statistical Association and the 
Institute of Mathematical Statistics. Contact him at rbell@
research.att.com.

Chris Volinsky is director of statistics research at AT&T 
Labs—Research. His research interests are large-scale data 
mining, social networks, and models for fraud detection. He 
received a PhD in statistics from the University of Wash-
ington. Volinsky is a member of the American Statistical 
Association. Contact him at volinsky@research.att.com.

 11. Y. Koren, “Collaborative Filtering with Temporal Dynam-
ics,” Proc. 15th ACM SIGKDD Int’l Conf. Knowledge Discovery 
and Data Mining (KDD 09), ACM Press, 2009, pp. 447-455. 

 12. J. Bennet and S. Lanning, “The Netflix Prize,” KDD Cup and 
Workshop, 2007; www.netflixprize.com. 

Yehuda Koren is a senior research scientist at Yahoo Re-
search, Haifa. His research interests are recommender 
systems and information visualization. He received a 
PhD in computer science from the Weizmann Institute of 
Science. Koren is a member of the ACM. Contact him at 
yehuda@yahoo-inc.com.


