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Can Google help?

• Yes, but only when we really know what we are looking for

• What if I just want some interesting music tracks?

• Btw, what does it mean by “interresting”?
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Can Facebook help?

• Yes, I tend to find my friend’s stuffs interesting

• What if I had only few friends, and what they 
like do not always attract me?
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Can experts help?

• Yes, but it won’t scale well

• Everyone receives exactly the same advice!

• It is what they like, not me!

• Like movies, what get expert approaval does not guarantee attention 
of the mass
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Recommender Systems

Help to match users with items



An idea called RecSys

• To recommend to us something we may like

• it may not be popular

• the world is long-tailed

• How?

• based on our history of using services

• based on other people like us

• among other things…
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Hang on, what is long-tailed?

• Popularised by Chris Anderson, Wired 2004
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Ever heard of
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The value of recommendation

• Netflix: 2/3 of the movies watched are 
recommended

• Google News: recommendations generate 38% 
more clickthrough

• Amazon: 35% sales from recommendations
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Academic

• In 2007

• ACM RecSys Conference

• Tracks on major CS conferences

• WWW, CIKM, WSDM, KDD, SIGIR, ICML, NIPS, 
…

• and journals …
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Problem characterization

• Given

• The profile of the “target” user and possibly some situational context

• Compute

• A relevance (ranking) score for each recommendable item

• The profile

• … can include past user ratings (explict or implicit), demographics, …

• The problem

• … is to learn a function that predicts the relevance score for a given 
(unseen) item
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Item score

i3 0,87

i8 0,65

i2 0,29

top-N
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Recommender Systems

Recommender 
Function

Recommender systems reduce 
information overload by 

estimating relevance



Item score

i3 0,87

i8 0,65

i2 0,29

User profile 
& context

top-N
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Recommender Systems

Recommender 
Function

Personalized recommendations



Item score

i3 0,87

i8 0,65

i2 0,29

User profile 
& context

Community 
data

top-N

Recommender Systems

Recommender 
Function

Collaborative: “tell me what’s 
popular among my peers”



Item score

i3 0,87

i8 0,65

i2 0,29

Title Genre Actors ...

Item features

User profile 
& context

top-N

19

Recommender Systems

Recommender 
Function

Content-based: “show me more of 
the same what I’ve liked”



Item score

i3 0,87

i8 0,65

i2 0,29

Title Genre Actors ...

Item features

User profile 
& context

Community 
data

top-N
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Recommender Systems

Recommender 
Function

Hybrid: combinations of various 
inputs and/or composition of 

different mechanisms



Collaborative filtering



Collaborative filtering

• The most prominent approach

• Use the preferences of a community to recommend items

• Basic assumption and idea

• users give ratings to catalog items (implicitly or explicitly)

• patterns in the data help me predict the ratings of 
individuals, i.e., fill the missing entries in the rating matrix

• there are users with similar preference structures

• there are latent characteristics of items that influence 
the ratings by users
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1992: Using collaborative filtering to weave an information 
tapestry (D. Goldberg et. al., Comm. of the ACM)

• Eager readers read all docs immediately, casual readers wait for 
the eager readers to annotate

• Experimental mail system at Xerox Parc

• Records reactions of users when reading a mail

• Users are provided with personalized mailing list filters instead of 
being forced to subscribe

• content-based filters (topics, …)

• collaborative filters

• “mails to [all] which were replied by [Rob] and which 
received positive ratings from [X] and [Y]”
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1994: Groplens: an open architecture for collaborative 
filtering of netnews (P. Resnick et al.,  ACM CSCW)

• Tapestry system does not aggregate ratings and requires knowing 
each other

• Basic idea of GroupLens:

• People who agreed in their subjective evaluation in the 
past are likely to agree again in the future 

• Builds on newsgroup browsers with rating functionality
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Nearest-neighbors (kNN)
• A “pure” CF approach and traditional baseline

• Solution approach

• Given an “target user” (Alice) and an item i not yet seen by 
Alice

• Estimate Alice’s rating for this item based on like-minded users 
(peers)

• Assumptions

• If users had similar tastes in the past they will have similar 
tastes in the future

• User preferences remain stable and consistent over time
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Questions…

1. How to determine the similarity of two users?

2. How do we combine the ratings of the neighbors to 
predict Alice’s rating?

3. Which/how many neighbors’ opinions to consider?
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1 - Computing similarity

• A popular measure: Pearson’s correlation coefficient
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Pearson correlation
• Takes differences in rating behavior into account

• Works well in usual domains, compared with alternative measures

• such as cosine similarity
28
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Making predictions
• A common prediction function

• calculate, whether the neighbors’ ratings for the unseen item i are higher or 
lower than their average

• combine the rating differences - use the similarity with as a weight

• add/subtract the neighbors’ bias from the target user’s average and use this as a 
prediction

• How many neighbors?

• only consider positively correlated neighbors (or higher threshold)

• can be optimized based on data set

• often, between 50 and 200
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kNN considerations
• Very simple scheme leading to quite accurate recommendations

• still today often used as a baseline scheme

• Possible issues

• scalability

• thinking of millions of users and thousands of items

• pre-computation of similarities possible but potentially unstable

• clustering techniques are often less accurate

• coverage

• problem of finding enough neighbors

• users with preferences for niche products
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Memory- and model-based approaches

• kNN methods are often said to be “memory-based”

• the rating matrix is directly used to find neighbors and make predictions

• does not scale for most real-world scenarios

• large e-commerce sites have millions of customers and millions of items

• Model-based approaches

• based on an offline pre-processing or “model-learning” phase

• at run-time, only the learned model is used to make predictions

• models are updated / re-trained periodically

• large variety of techniques used

• model-building and updating can be computationally expensive
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Model-based techniques
• Variety of approaches proposed in recent years, e.g.,

• matrix factorization techniques

• singular value decomposition, principal component analysis

• probabilistic models

• clustering models, Bayesian networks, topic models, …

• various other machine learning approaches

• regression-based techniques, deep neural networks, …

• Costs of pre-processing

• usually not discussed

• incremental updates possible = algorithms exist
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Matrix factorization
• Informally, the SVD theorem (Golub and Kahan 1965) states that a given 

matrix M can be decomposed into a product of three matrices as follows

• where U and V are called left and right singular vectors  and the values of 
the diagonal of      are called the singular values

• We can approximate the full matrix

• by observing only the most important features - those with the largest 
singular values

• In the example,

• we calculate U, V, and      (with the help of some linear algebra 
software)
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Example for SVD-based 
recommendation

• U and V correspond to the latent user and item factors
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The “latent factor space”
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2006: “Funk-SVD” and 
the Netflix prize

• Netflix announced a million dollar prize

• Goal:

• Beat their own “Cinematch” system by 10 percent

• Measure in terms of the Root Mean Squared Error (RMSE)

• Effect:

• stimulated lots of research

• Idea of SVD and matrix factorization picked up again

• S. Funk

• use fast gradient descent optimization procedure

• http://sifter.org/~simon/journal/20061211.html
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Learn the weights iterativelly

• Start with small initial weights

• Repeat

• make prediction with current model

• adapt the weights incrementally

• learning rate as a hyperparameter

• stop after n iterations
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2008: Factorization meets the neighborhood: a 
multifaceted collaborative filtering model (Y. Koren,  KDD)

• Combines neighborhood models with latent factor models

• latent factor models

• good to capture weak signals in the overall data

• neighborhood models

• good at detecting strong relationship between similar items

• combination in one prediction single function

• includes user- and item bias, considers who rated what

• add penalty (regularization) for high values to avoid over-fitting



Generalization: a machine learning 
problem

• Recommendation is concerned with learning from noisy 
observations (x,y), where           has to be determined such 
that               is minimal

• A variety of different learning strategies have been applied 
trying to estimate f(x)

• non parametric neighborhood models

• MF models, factorization machines, deep neural networks, …

• Netflix prize winner:

• combine a large number of predictors in ensemble 
method
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Rating prediction and 
Item recommendation

• Making predictions is typically not the ultimate goal

• Usual approach

• rank items based on their predicted ratings

• Ranking approaches

• “Learning to rank”

• recent interest in ranking techniques

• optimize according to a (proxy of a) given rank 
evaluation metric
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Explicit and implict ratings
• Explicit ratings

• most commonly used (1 to 5, …)

• typically only one rating per user and item, including time-stamp

• Some research topics

• data sparsity 

• users not always willing to rate many items

• how to stimulate users to rate more items?

• which items have (not) been rated?

• ratings not missing at random 

• multidimensional ratings 

• multiple ratings per hotel (location, service, …)
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• Implicit ratings (feedback)

• clicks, page views, time spent on some page, …

• multiple events over time

• can be collected constantly and do not require additional efforts from the 
side of the user

• Research topics

• correct interpretation of the (strength of the) action

• buy something for a friend, accidental clicks

• huge amounts of data to be processed

• algorithmic questions

• combination with explicit ratings (e.g., Koren’s SVD++ method)

• specific algorithms (e.g., Bayesian Personalized Ranking)
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• How to recommend new items? What to recommend to new users?

• Straightforward approaches

• ask/force users to rate a set of items

• use another method (e.g., content-based or simply non-personalized) in 
the initial phase

• default voting: assign default values to items that only one of the two users 
to be compared has rated

• Alternatives

• use better algorithms (beyond nearest-neighbor approaches)

• exploit additional information sources, e.g., Social Web data

• Example

• in nearest-neighbor approaches, the set of sufficiently similar neighbors 
might be too small to make good predictions

• assume “transitivity” of neighborhoods

Data sparsity - cold start situations



Summary CF approaches
• Operate on the basis of explicit or implicit feedback 

of a user community

• well-understood, lots of algorithms

• works in practice

• no information about the items required

• Challenges

• cold start and data sparsity issues

• scalability can be an issue

• often no explanations possible
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CF tools and libraries
• Some open source solutions exist

• MyMediaLite (C#)

• Implements wide range of modern algorithms

• LensKit

• modular framework built in Java

• PREA

• Java-based library of recent CF algorithms

• Apache Mahout, RapidMiner, Apache Spark + MLib

• implement learning algorithms usable for recommenders

• Mahout: distributed algorithms on Hadoop

• Recomender101

• Java-based framework, several algorithms and metrics
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Content-based filtering

Item score

i3 0,87

i8 0,65

i2 0,29

Title Genre Actors ...

Item features

User profile 
& context

top-N

Recommender 
Function

Content-based: “show me more of 
the same what I’ve liked”



Content-based filtering
• Again:

• determine preferences of user based on past behavior

• However,

• look at what the target user liked (purchased, viewed, …)

• estimate the user’s taste for certain item features

• e.g., genre, authors, release date, …

• alternative preference acquisition

• ask the user, look at recently viewed items

48



What is the “content”?
• Most CB-recommendation techniques were applied to 

recommending text documents

• like web pages or newsgroup messages

• Content of items can also be represented as text documents

• with textual descriptions of their basic characteristics

• structured: each item is described by the same set of attributes

• unstructured: free-text description
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Content representation and 
item similarities

• Represent items and users in the same way

• A simple method

• compute the similarity of an unseen item with the user 
profile based on the keyword overlap

• or use and combine multiple metrics
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Term-frequency - Inverse document 
frequency (TF-IDF)

• Simple keyword representation has its problems

• specially when automatically extracted:

• not every word has similar importance

• longer documents have a higher chance to have an overlap with the user 
profile

• Standard measure: TF-IDF

• encodes text documents in multi-dimensional Euclidian space

• TF: measures how often a term appears (density in a document)

• assuming that important terms appear more often

• normalization has to be done in order to take document length into account

• IDF: aims to reduce the weight of terms that appear in all documents
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Improving the vector space model

• Vectors are usually long and sparse

• Remove stop words 

•  they will appear in nearly all documents

• e.g.: “a”, “the”, “on”, …

• Use stemming

• aims to replace variants of words by their common stem

• e.g.: “went” = “go”, “stemming” = “stem”, …

• Size cut-offs

• only use top n most representative words to remove “noise” from data

• e.g.: use top 100 words

• Tuning of representation

• logarithmic instead of linear TF count
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Improving the vector space model

• Use lexical knowledge, use more elaborate methods for feature selection

• remove words that are not relevant in the domain

• Detection of phrases/n-grams

• more descriptive for a text that single words

• e.g.: “United Nations”

• Limitations

• semantic meaning remains unknown

• example: usage of a word in a negative context 

• “there is nothing on the menu that a vegetarian would like…” 

• the word “vegetarian” will receive a higher weight then desired

• an unintended match with a user interested in vegetarian restaurants
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Comparing the vectors (users/items)

• Usual similarity metric to compare vectors:  cosine 
similarity

• cosine similarity is calculated based on the angle 
between the vectors

• compensates for the effect of different document lengths
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Recommending items
• Item recommendation: nearest neighbors

• Given a set of documents D already rated by the user (like/dislike)

• Find the n nearest neighbors of a not-yet-seen item i in D

• use similarity measures to capture similar documents

• Rating predictions

• Take these neighbors to predict a rating for i

• e.g.: k = 5 most similar items to i

• 4 of k items were liked by current user = item i will also be liked by this user

• Variations:

• varying neighborhood size k

• lower/upper similarity thresholds

• Good to model short-term interests / follow-up stories

• Used in combination with method to model long-term preferences
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On feature selection
• Process of choosing a subset of available terms

• Different strategies exist for deciding which features to use

• feature selection based on domain knowledge and lexical 
information from WordNet

• frequency-based feature selection to remove words appearing 
“too rare” or “too often”

• Evaluate value of individual features (keywords) independently and

• Construct a ranked list of “good” keywords

• typical measures for determining utility of keywords

• e.g.: X2, mutual information or Fisher’s discrimination index
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Limitations of content-based methods

• Keywords alone may not be sufficient to judge quality/
relevance of a document or web page

• up-to-date-ness, usability, writing style

• content may also be limited / too short

• content may not be automatically extractable 
(multimedia)

• Overspecialization

• algorithms tend to propose “more of the same”

• or: too similar news items
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Discussion and summary
• Content-based techniques do not require a user community

• they however require content information

• recetly, Wikipedia, Linked Data, Social Tags, …

• The presented approaches learn a model of the user’s interest preferences 
based on explicit or implicit feedback

• deriving implicit feedback from user behavior can be problematic

• Danger exists that recommendation lists contain too many similar items

• all learning techniques require a certain amount of training data

• some learning methods tend to overfit the training data

• Research focuses on CF methods, in practice, however

• content-based methods work well in some domains
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Evaluation



What is a good recommendation?

• This might lead to ..

• What is a good recommendation?

• What is a good recommendation strategy?

• What is a good recommendation strategy for my 
business?
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What is a good recommendation?

• What are the measures in practice?

• total number of sales

• click-through rates

• customer return rates

• customer satisfaction and loyalty
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How do we as researchs know?

• Test with real users

• A/B tests

• example measures: sales increase, click-through rates

• Laboratory studies

• controlled experiments

• example measures: satisfaction with the system

• Offline experiments

• based on historical data

• example measures: prediction accuracy, coverage, …
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Metrics: Precision and Recall
• Recommendation is viewed as information retrieval tasks:

• retrieve (recommend) all items which are predicted to be “good”

• compare with “hidden” elements for which the ground truth is known

• Precision: a measure of exactness, determines the fraction of relevant items retrieved 
out of all items retrieved

• e.g., the proportion of recommended movies that are actually good

• Recall: a measure of completeness, determines the fraction of relevant items retrieved 
out of all relevant items

• e.g., the proportion of all good movies recommended



Precision vs. Recall
• E.g. typically when a recommender system is tuned to 

increase precision, recall decreases as a result (or vice versa)
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F1 metric

• The F1 metric attempts to combine Precision and Recall 
into a single value for comparison purposes

• may be used to gain a more balanced view of performance

• the F1 metric gives equal weight to precision and recall

• other F* metrics weight recall with a factor of *

65



Precision@k, recall@k, 
Mean Average Precision

• Precision@k/Recall@k 

• define a threshold (list length) and count the “hits” proportion

• Mean average precision (MAP) 

• determine the position of each hit (e.g., 2,3,5)

• calculate the average for all hits in the list

• average over all recommendations

• Mean reciprocal rank (MRR) 

• assume that there is only one relevant item or only the first is 
important

• it its position is K, the MRR is 1/K
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Average precision
• Average precision (AP) is a ranked precision metric that places 

emphasis on highly ranked correct predictions (hits)

• Essentially it is the average of precision values determined after 
each successful prediction, i.e.
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Metrics: rank position matters

• For a user:

• Rank metrics extend recall and precision to take the 
positions of correct items in a ranked list into account

• relevant items are more useful when they appear 
earlier in the recommendation list

• nDCG, Lift index, Rank Score
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Discounted cumulative gain (DCG)

• Concept of graded relevance

• hits at the beginning count more (more “gain”)

• documents of higher relevance are more important

• discounted gain at later positions

• often an exponential decay (half life) is assumed

• e.g., based on the log function

• given a rank position p, and the graded relevance “rel” of an item i

• nDCG: Normalized value at length n

• compare with “ideal” ranking
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nDCG example
• There are 6 items to rank

• Relevance scores (0-3) scale:

• 3,2,3,0,1,2

• DCG at 6:

• An ideal ordering IDCG:

• 3,3,2,2,1,0 would lead to an DCG of 8.69

• The nDCG

• DCG/IDCG: 8.10/8.69 = 0.932
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Problem of the ground truth

• Often in Information Retrieval settings

• set of target documents is labeled with ground truth

• In recommender systems

• no rating available for most of the items

• considering unrated items as irrelevant?

• different ways of computing precision/recall

• how to count the ranked elements with unknown 
ground truth
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Error measures

• Mean absolute error (MAE)

• Root Mean Square Error (RMSE)
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Dataset characteristics

• Natural datasets include historical interaction records of real users

• explicit user ratings

• datasets extracted from web server logs (implicit feedback)

• Sparsity of a dataset is derived from ratio of empty and total 
entries in the user-item matrix

• Sparsity = 1 - |R| / (|I| x |U|)

• R = ratings

• I = items

• U = users
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The Netflix Prize setup
• Netflix competition

• web-based movie rental and streaming

• Prize of $1M for accuracy improvement (RMSE) of 10% compared to own 
Cinematch system

• Historical dataset

• ~480K users rated ~18K movies on a scale of 1 to 5

• ~100M ratings

• Last 9 ratings/user withheld

• probe set - for teams evaluation

• quiz set - evaluates teams’ submissions for leaderboard

• test set - used by Netflix to determine winner
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General methodology
• Setting to ensure internal validity

• one randomly selected share of known ratings (training set) used as input to 
train the algorithm and build the model

• model allows the system to compute recommendations at runtime

• remaining share of withheld ratings (testing set) required as ground truth to 
evaluate the model’s quality

• to ensure the reliability of measurements the random split, model building 
and evaluation steps are repeated several times

• K-fold cross validation is a stratified random selection procedure

• k disjunct fractions of known ratings with equal size are determined

• k repetitions of the model building and evaluation steps, where each fraction 
is used exactly once as a testing set while the other fractions are used for 
training

• setting k to 5 or 10 is popular
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Analysis of results

• Are observed differences statistically meaninful or 
due to chance?

• standard procedure for testing the statistical 
significance of two deviating metrics is the 
pairwise analysis of variance (ANOVA)

• Null hypothesis H0: observed differences have 
been due to chance

• if outcome of test statistics rejects H0, significance 
of findings can be reported
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Beyond accuracy - more quality 
metrics for recommenders

• Coverage 

• for how many users can we make recommendations?

• how many catalog items are ever recommended?

• Diversity & novelty 

• avoiding monotone lists, discover new (families of) items

• Serendipity 

• unexpected and surprising items might be valuable

• Familiarity 

• give the user the impression of understanding his/her needs

• Biases 

• does the recommender only recommend popular items and blockbusters?

• …
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Hybrid RecSys
• Collaborative and content-based filtering

• all pieces of information can be relevant in real-world advisory 
or recommendation scenarios

• but all have their shortcomings

• Idea of crossing two (or more) species/implementations

• hybrida: denotes an object made by combining two different 
elements

• avoid some of the shortcomings

• reach desirable properties not (or only inconsistently) present 
in parent individuals
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Limitations and success of 
hybridization strategies

• Only few works that compare strategies from the 
meta-perspective

• several datasets do not allow to compare different 
recommendation paradigms

• Netflix competition: “stacking” recomender systems

• weighted design based on > 100 predictors - 
recommendation functions

• adaptive switching of weights based on user model 
parameters
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Recent research topics
• Human decision making 

• take into account insights from consumer psychology

• phenomena like choice overload, (ir)rationality of human decision making processes, 
preference construction and stability

• Sales psychology

• context effects

• how to present items

• primacy/recency effects (list positions matter)

• decoy effects

• trust

• Behavioural patterns 

• maximizer / satisfizer
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Recent research topics
• Popularity and concentration biases of algorithms

• Short-term user interests

• Explanation interfaces for recommenders

• Multi-criteria recommender systems

• Music playlist generation (music recommendation)

• discussion of limitations of current evaluation measures

• analysis of what makes a good playlist

• Novel applications of recommender systems

• process modeling, drug discovery
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Recommender Systems


